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An expression for the single-eigenvalue (level) density is obtained for a class of ensembles previously con
sidered by the author. The method involves a continuum approximation of a discrete spectrum, and leads to 
the asymptotic level density as the formal solution of an integral equation. Specific results are calculated for 
the Jacobi, Hermite, and Laguerre ensembles. These agree with prior calculations for /? = 1 and /3 — 2, but have 
the feature of containing /3 as an arbitrary continuously variable parameter. An analogy with a one-dimen
sional Coulomb gas is used to interpret results and to initiate a search for ensembles with physically realistic 
densities. A class of ensembles is found which has asymptotic densities whose first and second derivatives are 
non-negative. 

I. INTRODUCTION 

SINCE the introduction of the Gaussian ensemble of 
Hamiltonian matrices by Wigner,1'2 various in

vestigations of matrix ensembles leading to single-
eigenvalue distributions and spacing distributions have 
ensued.3 The present work is concerned with an exami
nation of the single-eigenvalue (level) density for a 
large class of statistical ensembles. Specifically, we shall 
consider ensembles for which the joint-eigenvalue 
distributions have the form4 

i=l k<l 

where a^Xi^b and /3>0. Qwp is a normalization con
stant. Our objective is to obtain the asymptotic 
(JY —» oo) level density formulas corresponding to 
different choices of f(x), b, and a. This problem has 
already been investigated to some extent for several 
ensembles when # = 1 , 2 ' 5 and /3=2.3'4'6~9 For conven
ience, we shall denote an ensemble represented by (1) 
by Efi{f(x)\(a,b)}. 

The method employed here was first introduced by 
Wigner2 in connection with the Gaussian (Hermite) 
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ensemble of real-symmetric matrices; i.e., 

£i{exp(—X 2 /a 2) \ (— oo,oc)}. 

We find that the general approach of Wigner is suitable 
for treating the entire class of ensembles represented by 
(1). Specific advantages of the procedure are: (a) I t 
does not depend critically on the value of ft, which is 
allowed to be an arbitrary positive real number; (b) 
one does not need detailed information about the set of 
orthogonal polynomials associated with f(x) and (ayb); 
(c) the dependence of the density on the interval for a 
given f(x) is readily found. Two notable disadvantages 
should also be stated: (a) The condition of large N is 
met via a replacement of discrete sums by integrals. 
This is done early in the calculation, and also involves 
the neglect of certain correlations between the eigen
values—it is difficult to assess the validity of this 
procedure a priori; (b) a treatment of spacing distri
butions (where correlations between levels cannot be 
neglected) is evidently not possible using this approach 
or simple modifications thereof.10 The former, (a), is not 
considered serious, because in all cases where com
parisons with prior calculations are possible, good agree
ment is obtained; thus, the approximation scheme 
appears to be a valid one. The second disadvantage, 
(b), seems insurmountable. However, indications are 
that spacing distributions do not depend critically on 
the ensemble used.11 / / this is universally true, then the 
present method can be used in an attempt to find 
ensembles which yield physically meaningful level 
densities. 

The major result of this paper is that for finite inter
vals (a,b), the level density <r(x) can be written down 
formally in terms of integrations involving (d/dx) 
(ln/(x)), over the domain (a,b). The integrations can 

10 A substantial modification of the ideas involved herein (i.e., 
replacement of a discrete model by a continuum model) has been 
used to obtain approximate nearest-neighbor spacing distribution 
formulas for the circular ensembles and the Hermite ensembles. 
See F. J. Dyson, J. Math. Phys. 3, 140, 157 (1962). 

11 See the works referred to in footnotes 3, 4, and 10, plus the 
following. D. Fox and P. B. Kahn, Phys. Rev. 134, B1151 (1964); 
F. J. Dyson, J. Math. Phys. 3, 166 (1962). 
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be performed exactly for many cases of interest. One 
can let a or b be very large in order to simulate en
sembles over infinite and semi-infinite domains. For the 
so-called Hermite and Laguerre ensembles (defined in 
Sec. I l l ) we find that allowable solutions of <r(x) can be 
obtained only if b is proportional to (f3N)y; 7 = (J,l) f ° r 

the (Hermite, Laguerre) cases. For all of the classical 
ensembles (Jacobi, Hermite, Laguerre) the method 
yields agreement for those values of j3 which have 
already been investigated by other means. All of the 
present results contain /3 as an arbitrary positive 
parameter. 

There exists a one-to-one correspondence between 
the present formalism and certain one-dimensional 
Coulomb gases. This is used as a tool in the interpreta
tion of the results for the classical ensembles. In this 
discussion, two unusual situations arise: (i) a temper
ature-dependent external field is encountered; (ii) the 
limiting processes do not necessarily coincide with the 
ordinary thermodynamic limit. The Coulomb gas 
interpretation is also used to initiate a search for en
sembles which have physically realistic level densities. 
In particular, a class of ensembles is found which has 
asymptotic level densities whose first and second 
derivatives are positive semidefinite. 

II . GENERAL FORMULATION 

This section consists mainly of a review of an approxi
mation scheme due to Wigner.2 I ts application here is to 
a more general problem than Wigner considered, and 
we shall depart from his method in one essential way. 
A discussion of the analogy between the present problem 
and that involving a certain Coulomb gas is also con
tained in this section. 

I t is convenient to work with the logarithm of (1), 
which effectively converts products to summations: 

N 

]nP(xh- ••£#) = £ Inf(xi) 

+ i E l n | a p * - * i ^ - l n f l ^ . (2) 

For large N, we assume that the summations can be 
replaced by their corresponding integrations, which 
allows the introduction of the asymptotic level density 
cr(x): 

[ l n F ] = J a(x)\nf(x)dx 
J a 

pb pb 

+ J / / ln\x~y\^a(x)a(y)dxdy~-ln([lN^. (3) 
J a J a 

The object denoted symbolically by [TnPj is a func
tional of the function <r(x). The second term on the 
right should properly contain a function cr2(^,^), which 
contains correlations between two levels, one at x and 

one at y. The replacement of <r2(x,y) by a(x)<r(y) 
neglects these correlations. This is a crucial assumption, 
but is believed to be a valid one. I t is expected that the 
correlations effectively range over a few mean spacings, 
and that the ln|x—y\& factor of the integrand domi
nates over these in the integral. Another point of 
importance is the convergence of the integrals in (3). 
Notice that lnP(#i,- • •##) itself will be finite except for 
"exceptional" configurations where two or more Xj 
coincide or when f(xj) = 0 for one or more values of j . 
The spirit of the present work is that the actual (ob
served) configuration of the points #1, • • • XN will be that 
for which [ InP] is a maximum. This excludes the 
possibility of the "exceptional" configurations. In order 
to insure that (3) exists [which it must, to be a valid 
representation of (2)] we shall interpret all integrals as 
principal value integrals. These will be identical with 
the corresponding Riemann integrals, if they exist. 
Finally, it is tacitly assumed throughout that the most 
probable density function (i.e., the one which maxi
mizes [InP]) is equal to the density function which is 
obtained by integrating over all but one of the x3; in 
NP(xh- - -XN)- The above assumptions can be justified 
at least partially, a posteriori by noting agreement 
between our results and previous, independent 
calculations. 

The maximization of [ InP] is to be carried out under 
the normalization constraint 

I <r(x)dx=N. (4) 
• ' a 

This restriction introduces a Lagrange multiplier K. 
The condition 5{[}nP2+Kfa

ba(x)dx} = 0 yields the 
equation 

InfW+pl a(y)\n\x~y\dy+K=0. (5) 
J a 

K is independent of x. The restriction (4) does not 
eliminate the possibility of extraneous nonpositive 
semidefinite solutions. These must be ruled out by 
appropriate restrictions on a, b, and any free parameters 
in f(x). In principle, one can solve the integral equation 
(5), but in practice it is convenient to examine its first 
derivative. Careful differentiation of (5) yields the 
following singular integral equation of the first kind: 

rb *(y) d 
/ -dy=^-lnf(x). (6) 

J a (y—OC) dx 

At this point, we deviate from Wigner's approach. 
He was concerned with the Gaussian ensemble, where 
b— — a=oo.12 We, however, shall limit ourselves to 

12 For Wigner's particular problem, the solution of (6) appears 
offhand to entail the inversion of a so-called Hilbert transform. A 
closer investigation shows that this is not so, and that the in
version integral diverges. For a discussion of Hilbert transforms, 
see E. C. Titchmarsh, Introduction to the Theory of Fourier Inte
grals (Oxford University Press, London, England, 1948), p . 120. 
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finite values of a and b. While Wigner "guessed" the 
solution for his particular integral equation, our finite 
domain restriction allows the use of a rigorous mathe
matical solution to (6). Following Mikhlin,13 the general 
solution of (6) is 

d 

field is 
FeM^p-^d/dx^fixi). (9) 

X [ \R(y,a,b)-lnf(y) 
J a L dy 

[y-xJ-idy+Cw . (7) 

Here, R(x^aib)~[_{x~-a){b-~x)'J',21 and CpN is a con
stant, which can depend parametrically on a, b, f$, N, 
and any parameters which might appear in f(x). The 
formal evaluation of (7) must be followed by application 
of the restriction <r(x) ^ 0. Also, in certain cases, one can 
demand that <r(x) satisfies a specific boundary condition 
at x—a or x=b. The constant Cpw is completely deter
mined by (4). 

It is well to point out that there is not a one-to-one 
correspondence between a(x) and f(x). This is proved 
by example in Sec. I l l , where an infinite variety of 
functions f(x) give rise to the same asymptotic density 
over a specified interval (a,b). Furthermore, if this 
density is inserted back into (6) in order to find f(x), 
the infinite class of f(x) is not recovered. This point will 
be discussed further in Sec. III. 

The connection between f(x) and a(x) can be seen 
qualitatively by using the Coulomb gas analogy. That 
is, the present problem is mathematically equivalent to 
a simple physical model: A gas of N unit charges which 
(a) exists in a two-dimensional universe, (b) is confined 
to motion along a one-dimensional line in a temperature-
dependent external field, and (c) obeys Boltzmann 
statistics.14 The total potential energy of the system 
corresponding to (1) is 

k<j 
•Xk\ - £ jfr"1 \nf(xi)+constant. (8) 

The second summation corresponds to the temperature-
dependent external field WB. The Boltzmann factor 
exp£—/3W"] (omitting the trivial kinetic energy part), 
is identical to (1). The asymptotic level density in our 
original problem is identical to the asymptotic particle 
density in the corresponding Coulomb gas problem. The 
word asymptotic, as before, refers to the limit N —> °o. 
This may or may not be equivalent to the ordinary 
thermodynamic limit: N—> oo, (b~a)—> <*>, N/(b~a) 
= finite. This depends on the precise functional rela
tionships between b and N and a and N. 

The force on the ith particle due to the external 

13 S. G. Mikhlin, Integral Equations (Pergamon Press, Inc., 
New York, 1957), p. 131. 

14 The Coulomb gas analog was first used by Dyson. See footnote 
10. 

By varying f(x), one can evidently "push" the particles 
so as to obtain qualitatively different particle (level) 
densities. Because of the fact that a large number N of 
particles are involved, the effects of different functions 
f(x) are not completely trivial to analyze. For example, 
the previously cited situation, where many functions 
Fe(x) correspond to one <r(x), might oppose one's 
intuition. The interpretation here is that for very large 
iV, certain changes in the external field Fe(x) will not be 
sufficient to redistribute the particles. We shall rely 
quite heavily on the Coulomb analogy as a tool in the 
interpretation of our results. 

To close this section, we state a theorem which 
follows directly from (4)-(7). If the weight function 
f(x), and corresponding force Fe(x), give rise to an 
asymptotic density <r(x) over (0,6), then the ensemble 
with force [—Fe(—x)] over (—6,0) has the asymptotic 
density a(—x). The proof follows from simple change of 
variable manipulations in (4)-(7). 

III. APPLICATION TO THE CLASSICAL 
ENSEMBLES 

We now evaluate (7) for the three so-called classical 
ensembles, which are based on the weight functions and 
domains for the Jacobi, Hermite, and Laguerre poly
nomials. These have already been examined for specific 
values of /5.2-9 The Hermite ensembles, for /?= 1, 2, and 
4, arise from considerations of invariant ensembles of 
Hermitian matrices.3 Specific Jacobi ensembles for 
0=2 have arisen in a study of "formally invariant" 
ensembles of real orthogonal matrices by Dyson.15 

Specific Laguerre ensembles, for fi= 2, have also been 
encountered in Dyson's work with "formally invariant" 
ensembles—there, in connection with invariant en
sembles of anti-Hermitian matrices.16 A study of 
Laguerre ensembles has also been pursued by Bronk,9 

in connection with invariant ensembles of negative 
Hermitian matrices, and also by Kahn, Porter, and 
Tang.7 The classical ensembles, specifically, are as 
follows. 

Jacobi: E0{(l~x)m(l+x)n\ (-1,1)}, m,n>-L (10) 

Hermite: Ep{exp( — x2/o2)\ (—oo,oo)}. (11) 

Laguerre: Ep{xa exp(-x) | (0,<*>)}, a>~ 1. (12) 

Of course, the second two ensembles cannot be treated 
directly via (7) because infinite limits are involved. As 

16 F. J. Dyson, J. Math. Phys. 3, 1199 (1962). Remarks con
cerning the real orthogonal matrix ensembles are contained in 
Ref. 4. 

16 Here, the distribution of the negative of the squares of the 
eigenvalues are governed by the Laguerre ensembles (for (3 = 2) of 
index a = =fcj, depending on whether the matrices are taken over 
the real, complex, or quaternion fields, and whether the dimen
sionality is even or odd, 
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stated before, we shall replace these by finite, but large, 
limits. Due to the negative exponential dependences of 
the weight functions, this ' 'cutoff'' is expected to be 
valid. Specifically, instead of the ensembles (11) and 
(12), we examine Ep{exp(—x2/a2)\ (—6#,6#)} and 
Ep{xf* exp(—x) | (0,Z>L)}, respectively. The integrals 
involved in solving (7) for (10)—(12) can be performed 
quite readily.17 For the Jacobi ensembles, (10), the 
result is 

aj(x)=(N/T)(l-^)^2
J for all tn,n>-l. (13) 

For the Hermite and Laguerre ensembles, one finds that 
solutions to (7), satisfying (4), are 

as(x)= {a20Tr)~l{bH
2-x2)~ll2{a2N0+bH

2-2x2) (14) 

and 

<TL{x)^{^)~^x(bL-x)~]-^ 
X(N0+bL/2-x), for all a>-l, (15) 

respectively. Clearly, the subsidiary condition <r(x)^Q 
is not automatically satisfied by (14) or (15). The 
application of this restriction leads to the inequalities 

fc^>W)1/2, (16) 

bL^20N. (17) 

One might expect that the best approximations to the 
true infinite and semi-infinite domain ensembles would 
be obtained by choosing ## and &L to be their maximum 
allowable values. This, in fact, is the case, the results 
being 

aH(x)= (2/<r2t37r)(a2/3N-~%2)1/2, |* | < fcW)1/2 (18) 

and 

(rL(%)= {TT202X)~1I2{20N~~X)1I2 , 

O<x^20N, a > - l . (19) 

Notice that the choices bH= ( o W ) 1 / 2 and bL= (20N) 
are the only ones which insure that ^/(dtfrff) and 
(TLibh) are finite (they are identically zero). This 
curious situation shows that the approximation scheme 
is highly sensitive to the choice of intervals. In all 
applications, one must check to see that the interval is 
such that a(x) satisfies realistic boundary conditions. 

Before discussing these results, we recall that for 
0=2, an exact expression for a(x) can be written down 
for arbitrary N. If pk{x) denotes the orthogonal poly
nomials which are uniquely defined with respect to 
f(x) and (a,b)> then4 

*(*) = /(*) £ hrWix), (20) 

17 One of the variety of ways of doing these integrals is to use 
integral tables. Particularly recommended is W. Grobner and 
N. Hofreiter, Integraltafel, Unbestimmte Integrate, Erster Teil 
(Springer-Verlag, Vienna, Austria, 1957), 

where 

/ pk(x)pj(x)f(x)dx=hkdkj. (21) 
J a 

While a concise asymptotic formula for a(x) is not 
necessarily easily obtained from (20), specific features, 
such as the boundary conditions satisfied by <r(x) can be 
checked with relative ease. We shall find this useful in 
our analysis. 

The Jacobi density, (13), has the notable feature that 
it is independent of ft m, and n. I t also has the property, 
0 \ r (± l )=oo . However, it is clear from (20) that the 
latter cannot be so unless m and n are both negative. In 
fact, if {m>0, n>0}, then {<rj(+ l),crj(—1)} should be 
identically zero. Also, if m=n=0, the true value of 
aj(zLl) is finite, being JiV2.4 Equation (13) is, however, 
in exact agreement with previous findings for 0=2, 
which are also inaccurate at the end points.4-7 The 
present formalism does not yield a precise statement of 
the domain of validity for the approximation scheme, 
as do the methods using asymptotic properties of 
orthogonal polynomials. Here, the domain of validity 
must be sought via comparisons with (20) and the 
exploitation of the Coulomb analogy. The latter will 
now be pursued. The interaction potential energy We, 
for the Jacobi case, is 

N 

We= - f t - T [m ln( l-*0+» ln(l+**)]. (22) 
*—I 

For given values of 0, m, and n, one can imagine that 
this is due to two fixed charges at (#= + 1 , # = — 1) with 
magnitudes (m0~1,n0~1). If either m or n is negative, 
there will be an attractive force at x= + l or — 1 , 
respectively. This accounts for the infinite densities 
predicted by (20) for such situations. Similarly, if m or 
n is positive, there will be a repulsion at x= + 1 or — 1, 
explaining the zero densities predicted by (20). For 
very large N ( iV» | m0~x \, JV» | n0~l | ) , the fixed charges 
are expected to have little effect on the gross character of 
<rj(x). The cases where m and/or n take on the value 
zero correspond to the removal of the fixed charges. 
Here, the natural repulsion between the N charges 
causes the density to be high, but finite, near the walls. 
The presence of the fixed charges evidently only affects 
the behavior of the asymptotic density very near the 
walls. Since the interval is held fixed as N —> oo, tem
perature effects are washed out by the Coulomb inter
actions in the high-density gas; the results are therefore 
independent of 0. The number of particles per unit 
volume is equal to JiV, which does not correspond to the 
ordinary thermodynamic limit. 

The Hermite density, (18), exhibits an explicit 
dependence on 0. This is in agreement with prior calcu
lations for £ = 1 and 0= 2.2'5-6 These prior works showed 
that *H(X)~Q for \x\ > (Na2)112 when 0 = 1 , and for 
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\x\> (2iW2)1/2 when /3= 2. I t is inherent in the present 
formalism that aH(x) = 0 (identically) for | x | ̂  (/3Na2)112. 
The strict identity results from the truncation of an 
infinite domain to one of finite extent, and must be 
regarded as approximate when the domain is truly 
infinite. Our formalism does not admit analyses as 
detailed as Bronk's.8 In the Coulomb gas analogy, 

We^{^)-ix?. (23) 

This harmonic oscillator potential opposes the natural 
tendency of the particles to move toward the walls. The 
external force is strongest for large values of x, where it 
dominates over the Coulomb repulsion. As in the Jacobi 
case, the limiting process does not correspond to the 
ordinary thermodynamic limit; the mean density here 
is Nll2/2a$ll\ 

The Laguerre density, (19), has an explicit depend
ence on f3, but is independent of the parameter a. At the 
origin, it is infinite for all values of a. Certainly, this 
is a poor approximation for a > 0 , where (20) yields 
CTL(O) = 0. The discrepancy is analogous to that involved 
with the Jacobi ensembles. For /5=2, (19) is in agree
ment with the results of Bronk,9 and of Kahn, Porter, 
and Tang.7 Their methods are somewhat more precise, 
yielding specific domains of validity. Bronk's method 
yields (a—l)2/4N<x<4:N. The Coulomb analogy is 
again useful in the analysis of (19). The potential 
energy of interaction with the external field is 

I^-r1! fa-ahm). (24) 

For a = 0 , this corresponds to a constant negative 
electric field, making (19) at least qualitatively reason
able. For a^O, the second sum in (24) can be thought 
of as being due to a fixed charge, of strength a/3-1, at the 
origin. If a < 0 , the Coulomb attraction aids the electric 
field and (19), again, seems plausible. The application 
of (20) when a < 0 yields an infinite density at the origin. 
If a > 0 , the Coulomb repulsion opposes the electric field 
and causes the density very near the origin to be zero. 
The fact that A/r»|o:/3~:l| means that the gross behavior 
of <TL{%) is virtually unaffected by the fixed charge at 
the origin. For fixed /3, the usual thermodynamic limit 
is satisfied; i.e., the number of particles per unit volume 
is independent of N, being (2/3). By the theorem of Sec. 
II , the Laguerre ensemble's density (for a = 0 ) is simply 
related to that for the ensemble Ep{exp(+x) \ (—b,0)}. 
The density for the latter is equal to <TL(—X) for 
— 2j3N^x<0. This is a monotonically increasing func
tion of x, except for x^O. The second derivative of 
CTL(-X) with respect to x is not positive semidefinite. 

The Jacobi and Laguerre ensembles are good examples 
of the fact that a unique one-to-one correspondence 
does not necessarily exist between f(x) and <r(x). 

Furthermore, as mentioned before, substitution of cr(x) 
into (6) need not recover the entire class of functions 
f(x) which correspond to the particular function cr(x) 
using (7). Substitution of (13) and (19) into (6) leads to 

fj(x) = Const, 
and 

/L(#) = Cexp(—s) , 

respectively; i.e., only the Legendre ensemble and the 
special Laguerre ensemble for a = 0 are recovered. The 
reasons that the more general Jacobi and Laguerre 
ensembles also give rise to (13) and (19) have already 
been discussed via the Coulomb gas analogy. The non-
unique relationship between f{x) and a- (x) can be traced 
(physically) to the specific asymptotic limits involved. 

IV. APPLICATIONS TO OTHER ENSEMBLES 

The results of Sec. I l l indicate that our general 
formalism is a valid one. I t is therefore natural to apply 
it further. One outstanding question in the statistical 
theory of energy level spectra is: Can one find matrix 
ensembles which yield not only the correct spacing 
distributions, but also a qualitatively correct density of 
levels? This problem has already been discussed by 
various people, but no^definitive results have arisen.4'7"9 

Both the Jacobi and Laguerre (for negative argument) 
densities have some desirable properties, but neither 
simultaneously satisfies the two conditions 

da(x)/dx^07 d2a(x)/dx2^0, for a<x<b. (25) 

These are considered to be necessary criteria for what 
we shall refer to as physically realistic densities.18 

As a first attempt to find ensembles whose densities 
satisfy the conditions (25), we explore the weight 
functions f(x)==exp[zh.xn+1/(n+l)~], n>0, over various 
domains. These are suggested because they correspond 
to known invariant matrix ensembles involving Trace 
(Hn+1), II being the Hamiltonian matrix. The external 
force on a particle at the position x for the above f(x) 
is given by Fe(x) = zL(xn/P). If the domain is such 
that a<Q<b, then there will be a point of zero field 
in the interval (afi). When n is an even integer, Fe(x) 
acts in one direction only, and one expects that a(x) is 
zero at x=a, increases, then dips, and then rises to 
infinity at x=b. The dip is due to the neighborhood 
about the zero-force field where the particles tend to 
behave as they do near # = 0 in the Legendre ensemble. 
This expectation is borne out by calculations. 

If one chooses the interval (0,b) and 

/(o?) = e x p [ - a j n + 1 / ( w + l ) l 

then one has a situation where the external force is zero 
at the left wall and is positive elsewhere. This results in 

18 Functions satisfying the second of conditions (25) are mem
bers of the set of convex functions. See G. H. Hardy, J. E. Little-
wood, and G. Polya, Inequalities (Cambridge University Press, 
London, England, 1934), p. 76. 
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a density which is infinite at both end points, resembling 
the Jacobi result (13), except that it is not symmetric 
about x=%b. 

The interval (—6,0) and weight function 

f(x) = exp[(~ 1) ̂ «+V (n+1)] (26) 

would appear to be a possibility in yielding densities 
satisfying (25). Here, the external force Fe(x) satisfies 
f3Fe(x) = (~x)n, which is largest for x=—b and smallest 
for x=Q, where the natural repulsion raises the density. 
The densities corresponding to (26) have been calcu
lated for integral values of n from zero to five, and it is 
found that they follow a definite pattern. Their general 
form, which we suspect is valid for all positive integers 
n, is 

Vn+lix) - (l/p7r)t(x+bn+l)/(-x)y<*£n(x) , (27) 

where 

£»(*) = £ { ( - l ) ^ ( 2 i ) ! / 2 ^ U 0 2 ] } ^ n + i V ^ , (28) 
Mi 

and 

b^in+l^ {22»+2[(>+1) r?0N/(2n+2)!}. (29) 

An examination of (27)-(29) shows that the conditions 
(25) are not satisfied for ^=0,1,2,- • •, etc. For ^=0 , the 
force is constant and is insufficient to cause the second 
derivative of <r(x) to be positive semidefinite. For n>0, 
the maximum force is equal to @~lbn+in, but this force 
diminishes rapidly as x increases, allowing the repulsion 
to cause a violation of one or both of the conditions (25). 

The approach of guessing weight functions in order to 
obtain a density satisfying (25) is not a very efficient 
one. A more direct approach is to choose specific func
tions a(x) which satisfy (25), and find f(x) via (6). 
Toward this end, we investigate the case 

<rm(%) =^@rlxm, m~ 0,1, etc. • • •, 

0=0 , bm+1^(in+l)/3N. (30) 

The evaluation of (6) for (30) yields 

m—1 

F.(x) = /3"1 £ p — V ( » - v)Jl~8ma]x" 

+i3-'xmlnZ(b-x)/x2. (31) 

The corresponding weight function, within a multi
plicative constant, is 

f(X) = x-(*-+l/m+l) (J-X)Q(h~x) 

XexplR(x)+S(b-x)2- (32) 

Q(b — x), R(x), and S(b—x) are polynomials of degree 
m+1 in the shown arguments. For each, the coefficient 
of the zeroth power is zero. Equations (31) and (32) have 
the following features: (i) / ( 0 ) - ^ l 6 W + 1 exp(Y2&

m+1); 

0/?e(O) =bm/m. (u)/(6) = J-*m+1/«+1exp(7«6w+1);^(A) 
— — oo. yh y2y and 73 are positive semidefinite functions 
of m. (iii) Fe(x) is large and positive over enough of the 
domain to require a negatively infinite force at x=b in 
order to insure a finite density at that point. Thus, we 
have a class of ensembles which gives rise to densities 
satisfying (25). They are relatively complicated, and 
the insertion of (32) back into (7) leads to integrals 
which are nontrivial (if at all possible) to evaluate. It 
is far from obvious which invariant matrix ensembles 
correspond to joint eigenvalue distributions given by 
(1) and (32). Finally, it is not known whether the form 
(32) is necessary in order for (25) to be fulfilled, but only 
that it is sufficient. 

The densities (30) have been used because the inte
grals could be performed quite readily. A natural ex
tension would be to insert actual level density formulas 
into (6). Such formulas have been investigated for 
nuclei by many people.19 They invariably involve a 
positive exponential dependence on the energy, with a 
typical form being 

a(x)^xp exp(qx—r)112, q>0. (33) 

Insertion of (33) into (7) leads to integrals of prohibitive 
difficulty. A rough argument, based on the fact that 
(33) can be well approximated over a finite domain by 
a polynomial leads us to the conclusion that a linear 
combination of "external forces" (31) can be chosen 
which will yield a density function very much like (33). 
A simple example is a small x expansion of Fe(x) for 
a(x)=/3~1 exp(Xx).20 For this case, the small x behavior 
is dominated by —/3""1 exp(Xx) Inn; which is what would 
be predicted using the above superposition argument. 

One can also employ the present scheme to gain in
sight into ensembles which have densities with a gap 
property; i.e., which are identically zero over some 
finite subinterval of (a,b). The investigation of such 
ensembles has already been initiated by other means.7-21 

A straightforward manipulation of the foregoing ideas 
can be used to obtain a class of ensembles which display 
"gaps" in their density functions. 

V. DISCUSSION 

We have seen that expressions (6) and (7) can be 
directly applied to a number of cases of interest. In the 
statistical theory of spectra, /3 is only allowed to take on 
the values 1, 2, or 4.3 However, f3 clearly determines the 
degree of repulsion between the levels (particles), and 
values of p other than 1, 2, or 4 might be meaningful in 
connection with the problem of approximate quantum 

19 See, for example, T. D. Newton, Can. J. Phys. 34, 804 (1956); 
N. Rosenzweig, Phys. Rev. 105, 950 (1957); 108, 817 (1957); 
T. Ericson, Phil. Mag. Suppl. 9, 425 (1960). 

20 Here, the "exponential integrals" Ei(#), which cannot be 
evaluated in closed form, are encountered. See Jahnke and F. 
Emde, Tables of Functions (G. E. Stechert and Company, New 
York, 1938), p. 1. 

21 C. E. Porter, J. Math. Phys. 4, 1039 (1963). 
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numbers,22 or perhaps in the treatment of superposed 
sequences.23 In both of these cases, the repulsion effect 
is reduced from its magnitude in a set of energy levels 
having a given, precise symmetry character. Such 
studies would evidently be useful only if local proper
ties, such as spacing distributions, could be found as a 
function of /?. This is not possible with the present 
formalism. 

The Coulomb analogy allows us to draw some con
clusions about certain ensembles without making any 
calculations at all. For example, Bronk9 has suggested 
the study of Ep{x112 exp(—X#2) | (— °° ,0)} in connection 
with finding a convex density [satisfying (25)]. The 
external potential energy of interaction for this case is 

W.= - i / T 1 ! ; l n ^ + X r 1 ^ *?. (34) 

The second set of terms would arise in 

Er fexp( -X^ | ( -oo ,0 )} , 

and the first set of terms correspond to an interaction 
with a fixed charge of magnitude f/3-1, located at the 
origin.From our experiences in Sec. I l l , we do not expect 
the fixed charge to change the density, except in the im
mediate neighborhood of the origin. We may conclude 

22 N. Rosenzweig and C. E. Porter, Phys. Rev. 120, 1698 
(1960); F. J. Dyson, J. Math. Phys. 3, 1191 (1962); N. Rosen
zweig, Bull. Am. Phys. Soc. 8, 263 (1963). 

23 H. S. Leff, J. Math. Phys. 5, 756 (1964); Bull. Am. Phys. Soc. 
8, 31 (1963). Also see the first of Refs. 22 and the second of Refs. 3. 

that the two above ensembles have the same asymptotic 
density. This density, for \ = J , is given by (27)-(29) 
for n= 1, and does not satisfy the conditions (25). 

In closing, we recall that our formalism demands a 
finite interval (aft) and we can only approach infinite 
and semi-infinite intervals. However, it should be 
remarked that it is this very fact which allows us to use 
the Coulomb analogy, which would be senseless in an 
infinite domain. There is no reason (other than con
venience) to favor symmetric domains over non-
symmetric domains or vice versa. The only factors 
which determine the asymptotic density are (i) the 
values of f(x) over (a,b), and (ii) the constraints im
posed on the "volume" (b — a). For the Hermite and 
Laguerre cases the level densities behave, very roughly, 
like the corresponding weight functions f(x) themselves. 
The Jacobi density does not share this feature and here, 
temperature effects are washed out. Indications are 
that for fixed intervals, the strong repulsion dominates, 
resulting in a behavior similar to (13). For intervals 
which are proportional to some positive power of N, the 
density resembles (crudely) f(x). If /5=0, the integral 
equation approach is no longer meaningful, and the 
densities for such cases are exactly proportional to 
f(x). For such cases, which correspond to infinite 
temperatures, the particles (levels) are statistically 
independent. 

Note added in proof. A further verification that Eq. 
(18) is correct is its agreement with o-jy(O) for /?=4; 

given by M. L. Mehta and F. J. Dyson, J. Math. Phys. 
4, 713 (1963). 


